quarta-feira, 28 de maio de 2008

Bomba atômica

Nuvem em forma de cogumelo deixada pela Bomba atomica que explodiu a 550 m. de altitude no centro de Hiroshima, Japão, a 6 de Agosto de 1945, atingiu 18 km de altura.
Uma bomba atómica(
português europeu) ou bomba atômica(português brasileiro) é uma arma explosiva cuja energia deriva de uma reação nuclear e tem um poder destrutivo imenso — uma única bomba é capaz de destruir uma cidade grande inteira. Bombas atômicas só foram usadas duas vezes em guerra, ambas pelos Estados Unidos contra o Japão, nas cidades de Hiroshima e Nagasaki, durante a Segunda Guerra Mundial (consistindo em um dos maiores ataques à uma população civil, quase 200 mil mortos, já ocorridos na história). No entanto, elas já foram usadas centenas de vezes em testes nucleares por vários países.
Muitos confundem o termo genérico "bomba atômica" com um aparato de
fissão. Por bomba atômica, entende-se um artefato nuclear passível de utilização militar via meios aéreos (caças ou bombardeiros). Por ogivas nucleares, entende-se as armas nucleares passíveis de utilização em mísseis. Já os artefatos nucleares não são passíveis de utilização militar, servindo portanto, somente para a realização de testes, como foi o caso do artefato de Trinity (o primeiro detonado) ou o caso do artefato nuclear norte-coreano testado em 9 de Outubro de 2006.
As
potências nucleares declaradas são os EUA, a Rússia, o Reino Unido, a França, a República Popular da China, a Índia, o Paquistão e Israel. Estes países já possuem o material para fins ofensivos. Outra nação que já testou armamento nuclear foi a Coréia do Norte, porém assinou um acordo com a ONU para se desarmar.

A nuvem em forma de cogumelo deixada pela Bomba atomica que explodiu a 550 m. de altitude no centro de Hiroshima, Japão, a 6 de Agosto de 1945, atingiu 18 km de altura.


Tipos de armas nucleares

Acelerador de partículas fabricado pela Philips-Eindhovenem 1937 para a pesquisa e desenvolvimento de Bombas Atômicas.
As bombas atômicas são normalmente descritas como sendo apenas de fissão ou de fusão com base na forma predominante de liberação de sua energia. Esta classificação, porém, esconde o fato de que, na realidade, ambas são uma combinação de bombas: no interior das bombas de hidrogênio, uma bomba de fissão em tamanho menor é usada para fornecer as condições de
temperatura e pressão elevadas que a fusão requer para se iniciar. Por outro lado, uma bomba de fissão é mais eficiente quando um dispositivo de fusão impulsiona a energia da bomba. Assim, os dois tipos de bomba são genericamente chamados bombas nucleares.

Acelerador de partículas fabricado pela Philips-Eindhovenem 1937 para a pesquisa e desenvolvimento de Bombas Atômicas.

Bombas de fissão nuclear
São as que utilizam a chamada fissão nuclear, onde os pesados núcleos atômicos do urânio ou plutônio são desintegrados em elementos mais leves quando são bombardeados por nêutrons. Ao bombardear-se um núcleo produzem-se mais nêutrons, que bombardeiam outros núcleos, gerando uma reação em cadeia. Estas são as historicamente chamadas "Bombas-A", apesar de este nome não ser preciso pelo fato de que a chamada fusão nuclear também é tão atômica quanto a fissão.

Bombas de fusão nuclear

Reação de implosão no nucleo de uma Bomba atômica
Baseiam-se na chamada
fusão nuclear, onde núcleos leves de hidrogênio e hélio combinam-se para formar elementos mais pesados e liberam neste processo enormes quantidades de energia. Bombas que utilizam a fusão são também chamadas bombas-H, bombas de hidrogênio ou bombas termonucleares
, pois a fusão requer uma altíssima temperatura para que a sua reação em cadeia ocorra. A bomba de fusão nuclear é considerada a maior força destrutiva já criada pelo homem, embora nunca tenha sido usada.

Reação de implosão no nucleo de uma Bomba atômica



Bomba suja


Conceitualmente, uma bomba suja (ou bomba de dispersão radiológica) é um dispositivo muito simples: é um explosivo convencional, como o TNT (trinitrotolueno), empacotado com um material radioativo. Ela é muito mais rústica e barata do que uma bomba nuclear e também é bem menos eficaz. Mas ela combina uma certa destruição explosiva com danos radioativos.
Os explosivos potentes causam danos por meio de um gás muito quente que se expande rapidamente. A idéia básica de uma bomba suja é usar a expansão de gás como um meio de propulsão para o material radioativo sobre uma extensa área, não há força destrutiva em si. Quando o explosivo é liberado, o material radioativo se espalha em um tipo de nuvem de poeira transportada pelo vento que atinge uma área maior do que a da própria explosão.
A força destrutiva da bomba, a longo prazo, seria a radiação ionizante do material contido nela. A radiação ionizante, que inclui partículas alfa, partículas beta, raios gama e raios-X é uma radiação com energia suficiente para extrair um elétron orbital para fora de um átomo. A perda de um elétron altera o equilíbrio entre os prótons e os elétrons do átomo, o que gera uma carga elétrica líquida no átomo (ele se torna um íon). O elétron liberado pode colidir com outros átomos para criar mais íons (confira Como funcionam os átomos para mais informações sobre partículas sub-atômicas).
Se isso acontece no corpo de uma pessoa, o íon pode causar muitos problemas porque a sua carga elétrica pode levar a reações químicas anormais dentro das células. Entre outras coisas, a carga pode quebrar as cadeias de DNA. Uma célula com uma fita de DNA quebrada morre ou o seu DNA desenvolve uma mutação. Se muitas células morrem, o corpo pode desenvolver várias doenças. Se o DNA sofre mutação, uma célula pode se tornar cancerígena e este câncer pode se espalhar pelo corpo. A radiação ionizante também pode causar o mal funcionamento das células, o que resulta em uma ampla variedade de sintomas coletivamente conhecidos como doença da radiação (em inglês). A doença da radiação pode ser fatal, mas as pessoas podem sobreviver a ela, particularmente se receberem um transplante de medula óssea.
Em uma bomba radioativa, a radiação ionizante vem dos isótopos radioativos, que são átomos simples que se degradam com o tempo. Em outras palavras, a disposição de prótons, nêutrons e elétrons que compõem o átomo gradualmente muda, formando diferentes átomos. Esta degradação radioativa libera um pouco de energia na forma de radiação ionizante (veja Como funciona a radiação nuclear para detalhes sobre radiação e isótopos radioativos).
Estamos expostos a pequenas doses de radiação ionizante constantemente: ela vem do espaço sideral, dos isótopos radioativos naturais e das máquinas de raios-X. Esta radiação pode causar câncer, mas o risco é relativamente baixo porque somente doses muito pequenas desta radiação são encontradas.
Uma bomba radioativa elevaria o nível de radiação acima dos níveis normais, aumentando o risco de câncer e doença da radiação.


Bombas de nêutrons (neutrões)

Uma última variante da bomba atômica é a chamada bomba de nêutrons, em geral um dispositivo termonuclear pequeno, com corpo de níquel ou cromo, onde os nêutrons gerados na reação de fusão intencionalmente não são absorvidos pelo interior da bomba, mas se permite que escapem. As emanações de raios-X e de nêutrons de alta energia são seu principal mecanismo destrutivo. Os nêutrons são mais penetrantes que outros tipos de radiação, de tal forma que muitos materiais de proteção que bloqueiam raios gama são pouco eficientes contra eles. As bombas de nêutrons têm ação destrutiva apenas sobre organismos vivos, mantendo, por exemplo, a estrutura de uma cidade intacta. Isso pode representar uma vantagem militar, visto que existe a possibilidade de se eliminar os inimigos e apoderar-se de seus recursos.


Efeitos

Fat Man, A bomba atómica que explodiu em Nagasaki, Japão
Os efeitos predominantes de uma bomba atômica (a explosão e a radiação térmica) são os mesmos dos
explosivos convencionais. A grande diferença é a capacidade de liberar uma quantidade imensamente maior de energia de uma só vez. A maior parte do dano causado por uma arma nuclear não se relaciona diretamente com o processo de liberação de energia da reação nuclear.
O dano produzido pelas três formas iniciais de energia liberada difere de acordo com o tamanho da arma. A energia liberada na explosão segue a equação de Einstein, E=mc², onde E é a energia liberada, m é a massa da bomba que "some" na explosão e c (celeritas) é a velocidade da luz.

A bomba que foi lançada no japão chamada "fat man"
Curiosidades


Oficialmente, a mais poderosa Bomba detonada foi de 57 Megatons - conhecida como Tsar Bomba - em um teste realizado pela URSS em outubro de 1961. Esta bomba tinha mais de 5 mil vezes o poder explosivo da bomba de Hiroshima, e maior poder explosivo que todas as bombas usadas na II Guerra Mundial somadas (incluindo as 2 bombas nucleares lançadas sobre o Japão). Podemos lembrar que as bombas lançadas nas cidades de Hiroshima e Nagasaki mataram quase 200 mil pessoas, e dizem que até hoje os povos dessas regiões sofrem com a radiação local.


O que a Bomba Atômica nos deixou






quinta-feira, 15 de maio de 2008

Fissão e Fusão nuclear.Qual é a Diferença?

Fissão nuclear é a divisão de um núcleo atômico pesado e instável através do seu bombardeamento com nêutrons - obtendo dois núcleos menores, nêutrons e a liberação de uma quantidade enorme de energia.
Na fissão (ou cisão) nuclear, um átomo de um elemento é dividido produzindo dois átomos de menores dimensões de elementos diferentes.
A fissão de
urânio 235 liberta uma média de 2,5 neutrons por cada núcleo dividido. Por sua vez, estes neutrons vão rapidamente causar a fissão de mais átomos, que irão libertar mais neutrons e assim sucessivamente, iniciando uma auto-sustentada série de fissões nucleares, à qual que se dá o nome de reacção em cadeia, que resulta na libertação contínua de energia.
Quando a massa total dos produtos da Fissão nuclear é calculada, verifica-se que é menor do que a massa original do átomo antes da cisão. A
teoria da relatividade de Albert Einstein dá a explicação para esta massa perdida: Einstein demonstrou que massa e energia são duas grandezas físicas conectadas por uma relação de equivalência. Desta forma, a massa perdida durante a cisão foi, de fato, convertida em energia. Einstein resumia esta relação de equivalência massa-energia na famosa equação:
E = mc^2\,\!

onde E é a energia, m a massa e c a
velocidade da luz. Uma vez que c é muito grande (300 mil quilômetros por segundo), E será realmente muito grande, mesmo quando se perde apenas uma pequena porção de massa.







Fusão nuclear é a junção de dois ou mais núcleos atômicos produzindo um único núcleo maior, com liberação de grande quantidade de energia. Nas estrelas como o Sol, ocorre a contínua irradiação de energia (luz, calor, ultravioleta, etc.)proveniente da reação de fusão nuclear.


A fusão nuclear requer muita energia para acontecer, e geralmente liberta muito mais energia que consome. Quando ocorre com
elementos mais leves que o ferro e o níquel (que possuem as maiores forças de coesão nuclear de todos os átomos, sendo portanto mais estáveis) ela geralmente liberta energia, e com elementos mais pesados ela consome. Até hoje início do século XXI, o homem ainda não conseguiu encontrar uma forma de controlar a fusão nuclear como acontece com a fissão.
O principal tipo de fusão que ocorre no interior das
estrelas é o de Hidrogênio em Hélio, onde dois prótons se fundem em uma partícula alfa (um núcleo de hélio), liberando dois pósitrons, dois neutrinos e energia. Mas dentro desse processo ocorrem várias reações individuais, que variam de acordo com a massa da estrela. Para estrelas do tamanho do nosso Sol ou menores, a cadeia próton-próton é a reacção dominante. Em estrelas mais pesadas, predomina o ciclo CNO.
Vale ressaltar que há
conservação da energia, e, portanto, pode-se calcular a massa dos quatro prótons e o núcleo de hélio, e subtrair a soma das massas das partículas iniciais daquela do produto desta reação nuclear para calcular a massa/energia emitida.
Utilizando a equação E=mc2, pode-se calcular a energia liberada, oriunda da diferença de massa. Uma vez que o valor do "c" é muito grande ( aprox. 3 . 108 m/s ), mesmo uma massa muito pequena corresponde a uma enorme quantidade de energia. É este fato que levou muitos engenheiros e cientistas a iniciar projetos para o desenvolvimento de
reatores de fusão para gerar eletricidade (por exemplo, a fusão de poucos cm3 de deutério, um isótopo de hidrogênio, produziria uma energia equivalente àquela produzida pela queima de 20 toneladas de carvão).